Exercice 1

Rechercher les fonctions de base d'un élément fini unidimensionnel cubique, satisfaisant les trois critères classiques de convergence (continuité, différentiabilité et complétude).

Exercice 2

Etablir la contribution du terme $\kappa(du/dx)$ à la matrice de rigidité ^e**K** d'un élément fini quadratique modélisant le problème suivant de traction-compression dans une barre uniforme,

$$u \in C^{2}([0, \ell]) : -EA(d^{2}u/dx^{2}) + \kappa(du/dx) + \rho u = q \qquad 0 < x < \ell$$

avec les conditions essentielles de bord

$$u(0) = u(\ell) = 0$$

où u est l'allongement, E dénote le module d'élasticité, A représente l'aire de la section droite, κ et ρ sont des facteurs de proportionnalité et q est une charge répartie, tandis que ℓ désigne la longueur de la structure.

Exercice 3

Calculer l'abscisse et le coefficient de pondération des points de Gauss permettant d'intégrer exactement un polynôme complet de degré 5 en ξ entre -1 et +1.